Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change is increasingly impacting water availability. National-scale hydrologic models simulate streamflow resulting from many important processes, but often without processes such as human water use and management activities. This work explores and tests methods to account for such omitted processes using one national-scale hydrologic model. Two bias correction methods, Flow Duration Curve (FDC) and Auto-Regressive Integrated Moving Average (ARIMA), are tested on streamflow simulated by the US Geological Survey National Hydrologic Model (NHM-PRMS), which omits irrigation pumping. A semi-arid agricultural case study is used. FDC and ARIMA perform better for correcting low and high flows, respectively. A hybrid method performs well at both low and high flows; typical Nash-Sutcliffe values increased from <-1.00 to about 0.75. Results suggest methods with which national-scale hydrologic models can be bias-corrected for omitted processes to improve regional streamflow estimates. Utility of these correction methods in simulation of future projections is discussed.more » « less
-
Effects of a changing climate on agricultural system productivity are poorly understood, and likely to be met with as yet undefined agricultural adaptations by farmers and associated business and governmental entities. The continued vitality of agricultural systems depends on economic conditions that support farmers’ livelihoods. Exploring the long-term effects of adaptations requires modeling agricultural and economic conditions to engage stakeholders upon whom the burden of any adaptation will rest. Here, we use a new freeware model FEWCalc (Food-Energy-Water Calculator) to project farm incomes based on climate, crop selection, irrigation practices, water availability, and economic adaptation of adding renewable energy production. Thus, FEWCalc addresses United Nations Global Sustainability Goals No Hunger and Affordable and Clean Energy. Here, future climate scenario impacts on crop production and farm incomes are simulated when current agricultural practices continue so that no agricultural adaptations are enabled. The model Decision Support System for Agrotechnology Transfer (DSSAT) with added arid-region dynamics is used to simulate agricultural dynamics. Demonstrations at a site in the midwest USA with 2008–2017 historical data and two 2018–2098 RCP climate scenarios provide an initial quantification of increased agricultural challenges under climate change, such as reduced crop yields and increased financial losses. Results show how this finding is largely driven by increasing temperatures and changed distribution of precipitation throughout the year. Without effective technological advances and operational and policy changes, the simulations show how rural areas could increasingly depend economically on local renewable energy, while agricultural production from arid regions declines by 50% or more.more » « less
-
Abstract Long‐term erosion can threaten infrastructure and buried waste, with consequences for management of natural systems. We develop erosion projections over 10 ky for a 5 km2watershed in New York, USA. Because there is no single landscape evolution model appropriate for the study site, we assess uncertainty in projections associated withmodel structureby considering a set of alternative models, each with a slightly different governing equation. In addition to model structure uncertainty, we consider the following uncertainty sources: selection of a final model set; each model's parameter values estimated through calibration; simulation boundary conditions such as the future incision of downstream rivers and future climate; and initial conditions (e.g., site topography which may undergo near‐term anthropogenic modification). We use an analysis‐of‐variance approach to assess and partition uncertainty in projected erosion into the variance attributable to each source. Our results suggest one sixth of the watershed will experience erosion exceeding 5 m in the next 10 ky. Uncertainty in projected erosion increases with time, and the projection uncertainty attributable to each source manifests in a distinct spatial pattern. Model structure uncertainty is relatively low, which reflects our ability to constrain parameter values and reduce the model set through calibration to the recent geologic past. Beyond site‐specific findings, our work demonstrates what information prediction‐under‐uncertainty studies can provide about geomorphic systems. Our results represent the first application of a comprehensive multi‐model uncertainty analysis for long‐term erosion forecasting.more » « less
-
We review select mature geomorphic transport laws for use in temperate ridge and valley landscapes and compile parameter estimates for use in applications. This work is motivated by a case study of sensitivity analysis, calibration, validation, multimodel comparison, and prediction under uncertainty, which required bounding values for parameter ranges. Considered geomorphic transport formulae span hillslope sediment transport, soil production, and erosion by surface water. We compile or derive estimates for the parameters in these transport formulae. Additionally, we address a common challenge—connecting changes in precipitation distribution to changes in effective erodibility—by using a simple hydrologic model and a method to estimate precipitation distribution parameters using commonly available data. While some parameters are reasonably well constrained, others span orders of magnitude. Some, such as soil infiltration capacity, have a direct physical meaning but are challenging to measure on geologically relevant timescales. Through the process of compiling these ranges we identify common challenges in parameter determination. The issue of comparable units derives from considering an exponent as an empirically inferred coefficient rather than as an expression of a fundamental relationship. The issue of appropriate timescales derives from the mismatch between human measurement and geologic timescales. This contribution thus serves both as a practical compilation for applications and as a synthesis of outstanding challenges in parameter selection for geomorphic transport laws.more » « less
-
Despite considerable community effort, there is no general set of equations to model long‐term landscape evolution. In order to determine a suitable set of landscape evolution process laws for a site where postglacial erosion has incised valleys up to 50 m deep, we generate a set of alternative models and perform a multimodel analysis. The most basic model we consider includes stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface‐water discharge proportional to drainage area. We systematically add one, two, or three elements of complexity to this model from one of four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. We apply methods of formal model analysis to the 37 alternative models. The global Method of Morris sensitivity analysis method is used to identify model input parameters that most and least strongly influence model outputs. Only a few parameters are identified as important, and this finding is consistent across two alternative model outputs: one based on a collection of topographic metrics and one that uses an objective function based on a topographic difference. Parameters that control channel erosion are consistently important, while hillslope diffusivity is important for only select model outputs. Uncertainty in initial and boundary conditions is associated with low sensitivity. Sensitivity analysis provides insight to model dynamics and is a critical step in using model analysis for mechanistic hypothesis testing in landscape evolution theory.more » « less
-
We present a multimodel analysis for mechanistic hypothesis testing in landscape evolution theory. The study site is a watershed with well‐constrained initial and boundary conditions in which a river network locally incised 50 m over the last 13 ka. We calibrate and validate a set of 37 landscape evolution models designed to hierarchically test elements of complexity from four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. Comparison of each model to a base model, which uses stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface water discharge proportional to drainage area, serves as a formal test of which elements of complexity improve model performance. Model fit is assessed using an objective function based on a direct difference between observed and simulated modern topography. A hybrid optimization scheme identifies optimal parameters and uncertainty. Multimodel analysis determines which elements of complexity improve simulation performance. Validation tests which model improvements persist when models are applied to an independent watershed. The three most important model elements are (1) spatial variation in lithology (differentiation between shale and glacial till), (2) a fluvial erosion threshold, and (3) a nonlinear relationship between slope and hillslope sediment flux. Due to nonlinear interactions between model elements, some process representations (e.g., nonlinear hillslopes) only become important when paired with the inclusion of other processes (e.g., erosion thresholds). This emphasizes the need for caution in identifying the minimally sufficient process set. Our approach provides a general framework for hypothesis testing in landscape evolution.more » « less
An official website of the United States government
